Adverse Drug Reactions and Pharmacogenomics: Recent Advances (2022)

Papers of special note have been highlighted as either of interest (•) or of considerable interest (••) to readers.

  1. Vogel F, Jager P: The genetic load of a human population due to cytostatic agents. Humangenetik 7, 287–304 (1969). • Vogel introduced the term pharmacogenetics into the medical literature.

  2. Rawlins MD, Thompson JW: Mechanisms of adverse drug reactions. In: Textbook of Adverse Drug Reactions. Davies DM (Ed.), Oxford University Press, Oxford, UK 18–45 (1991).

  3. Lazarou J, Pomeranz BH, Corey PN: Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 279, 1200–1205 (1998). •• Meta-analysis of 39 prospective studies from US hospitals selected to estimate the incidence of serious and fatal adverse drug reactions.

  4. Pirmohamed M, James S, Meakin S et al.: Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ 329, 15–19 (2004). •• Prospective observational study of prevalence of all admissions to hospital due to adverse drug reactions in two large general hospitals in the UK.

  5. Uetrecht J: Idiosyncratic drug reactions: current understanding. Annu. Rev. Pharmacol. Toxicol. 47, 513–539 (2007). •• Comprehensive review of type B or idiosyncratic adverse drug reactions.

  6. Mallal S, Nolan D, Witt C et al.: Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 359, 727–732 (2002). •• Original description of the association of abacavir hypersensitivity with HLA alleles.

  7. Hetherington S, Hughes AR, Mosteller M et al.: Genetic variations in HLA-B region and hypersensitivity reactions to abacavir. Lancet 359, 1121–1122 (2002). •• Original description of the association of abacavir hypersensitivity with HLA alleles.

  8. Hughes DA, Vilar FJ, Ward CC, Alfirevic A, Park BK, Pirmohamed M: Cost-effectiveness analysis of HLA B*5701 genotyping in preventing abacavir hypersensitivity. Pharmacogenetics 14, 335–342 (2004). • Analysis of pretreatment genetic testing showing cost–effectivness.

  9. Chung WH, Hung SI, Hong HS et al.: Medical genetics: a marker for Stevens-Johnson syndrome. Nature 428, 486 (2004). •• Striking association of carbamazepine-induced Steven–Johnson syndrome and HLA alleles in Han Chinese.

  10. Hung SI, Chung WH, Jee SH et al.: Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet. Genomics 16, 297–306 (2006).

  11. Alfirevic A, Jorgensen AL, Williamson PR, Chadwick DW, Park BK, Pirmohamed M: HLA-B locus in Caucasian patients with carbamazepine hypersensitivity. Pharmacogenomics 7, 813–818 (2006).

  12. Lonjou C, Thomas L, Borot N et al.: A marker for Stevens–Johnson syndrome: ethnicity matters. Pharmacogenomics J. 6, 265–268 (2006).

  13. Hughes AR, Mosteller M, Bansal AT et al.: Association of genetic variations in HLA-B region with hypersensitivity to abacavir in some, but not all, populations. Pharmacogenomics 5, 203–211 (2004).

  14. Saag M, Balu R, Phillips E et al.: High sensitivity of HLA-B*5701 in whites and blacks in immunologically-confirmed cases of abacavir hypersensitivity (ABC HSR). Presented at: 4th International AIDS Society Meeting, Sydney, Australia (2007).

  15. Berson A, Freneaux E, Larrey D et al.: Possible role of HLA in hepatotoxicity. An exploratory study in 71 patients with drug-induced idiosyncratic hepatitis. J. Hepatol. 20, 336–342 (1994).

  16. O'Donohue J, Oien KA, Donaldson P et al.: Co-amoxiclav jaundice: clinical and histological features and HLA class II association. Gut 47, 717–720 (2000).

  17. Hirata K, Takagi H, Yamamoto M et al.: Ticlopidine-induced hepatotoxicity is associated with specific human leukocyte antigen genomic subtypes in Japanese patients: a preliminary case–control study. Pharmacogenomics J. (2007) (Epub ahead of print).

  18. Kindmark A, Jawaid A, Harbron CG et al.: Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J. (2007) (Epub ahead of print).

  19. Alfirevic A, Mills T, Harrington P et al.: Serious carbamazepine-induced hypersensitivity reactions associated with the HSP70 gene cluster. Pharmacogenet. Genomics 16, 287–296 (2006).

  20. Pirmohamed M, Lin K, Chadwick D, Park BK: TNFa promoter region gene polymorphisms in carbamazepine-hypersensitive patients. Neurology 56, 890–896 (2001).

  21. Phillips EJ, Wong GA, Kaul R et al.: Clinical and immunogenetic correlates of abacavir hypersensitivity. AIDS 19, 979–981 (2005).

  22. Braff DL, Freedman R, Schork NJ, Gottesman II: Deconstructing schizophrenia: an overview of the use of endophenotypes in order to understand a complex disorder. Schizophr. Bull. 33, 21–32 (2007).

  23. Gottesman II, Gould TD: The endophenotype concept in psychiatry: etymology and strategic intentions. Am. J. Psychiatry 160, 636–645 (2003).

  24. Al-Jenaidi FA, Wakim-Ghorayeb SF, Al-Abbasi A et al.: Contribution of selective HLA-DRB1/DQB1 alleles and haplotypes to the genetic susceptibility of Type 1 diabetes among Lebanese and Bahraini Arabs. J. Clin. Endocrinol. Metab. 90, 5104–5109 (2005).

  25. Rewers A, Babu S, Wang TB et al.: Ethnic differences in the associations between the HLA-DRB1*04 subtypes and Type 1 diabetes. Ann. NY Acad. Sci. 1005, 301–309 (2003).

  26. Butterworth JR, Iqbal TH, Cooper BT: Coeliac disease in South Asians resident in Britain: comparison with white Caucasian coeliac patients. Eur. J. Gastroenterol. Hepatol. 17, 541–545 (2005).

  27. Hunt KA, Monsuur AJ, McArdle WL et al.: Lack of association of MYO9B genetic variants with coeliac disease in a British cohort. Gut 55, 969–972 (2006).

  28. van Heel DA, Franke L, Hunt KA et al.: A genome-wide association study for celiac disease identifies risk variants in the region harboring IL2 and IL21. Nat. Genet. 39, 827–829 (2007).

  29. Emery LM, Babu S, Bugawan TL et al.: Newborn HLA-DR, DQ genotype screening: age- and ethnicity-specific Type 1 diabetes risk estimates. Pediatr. Diabetes 6, 136–144 (2005).

  30. Vogelsang H, Panzer S, Mayr WR, Granditsch G, Fischer GF: Distribution of HLA class I alleles differs in celiac disease patients according to age of onset. Dig. Dis. Sci. 48, 611–614 (2003).

  31. Zubillaga P, Vidales MC, Zubillaga I, Ormaechea V, Garcia-Urkia N, Vitoria JC: HLA-DQA1 and HLA-DQB1 genetic markers and clinical presentation in celiac disease. J. Pediatr. Gastroenterol. Nutr. 34, 548–554 (2002).

  32. Wojnowski L, Kulle B, Schirmer M et al.: NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicin-induced cardiotoxicity. Circulation 112, 3754–3762 (2005).

  33. Mushiroda T, Saito S, Tanaka Y et al.: A model of prediction system for adverse cardiovascular reactions by calcineurin inhibitors among patients with renal transplants using gene-based single-nucleotide polymorphisms. J. Hum. Genet. 50, 442–447 (2005).

  34. Makita N, Horie M, Nakamura T et al.: Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 106, 1269–1274 (2002).

  35. Mank-Seymour AR, Richmond JL, Wood LS et al.: Association of Torsades de Pointes with novel and known single nucleotide polymorphisms in long QT syndrome genes. Am. Heart J. 152, 1116–1122 (2006).

  36. Kannankeril PJ, Roden DM: Drug-induced long QT and Torsade de Pointes: recent advances. Curr. Opin. Cardiol. 22, 39–43 (2007).

  37. Thanacoody RH, Daly AK, Reilly JG, Ferrier IN, Thomas SH: Factors affecting drug concentrations and QT interval during thioridazine therapy. Clin. Pharmacol. Ther. 82, 555–565 (2007).

  38. Llerena A, Berecz R, de la Rubia A, Dorado P: QTc interval lengthening is related to CYP2D6 hydroxylation capacity and plasma concentration of thioridazine in patients. J. Psychopharmacol. 16, 361–364 (2002).

  39. Ford GA, Wood SM, Daly AK: CYP2D6 and CYP2C19 genotypes of patients with terodiline cardiotoxicity identified through the yellow card system. Br. J. Clin. Pharmacol. 50, 77–80 (2000).

  40. Alam A, Badovinac K, Ivis F, Trpeski L, Cantarovich M: The outcome of heart transplant recipients following the development of end-stage renal disease: analysis of the Canadian Organ Replacement Register (CORR). Am. J. Transplant 7, 461–465 (2007).

  41. Baan CC, Balk AH, Holweg CT et al.: Renal failure after clinical heart transplantation is associated with the TGF-ß1 codon 10 gene polymorphism. J. Heart Lung Transplant 19, 866–872 (2000).

  42. van de Wetering J, Weimar CH, Balk AH et al.: The impact of transforming growth factor-ß1 gene polymorphism on end-stage renal failure after heart transplantation. Transplantation 82, 1744–1748 (2006).

  43. Hauser IA, Schaeffeler E, Gauer S et al.: ABCB1 genotype of the donor but not of the recipient is a major risk factor for cyclosporine-related nephrotoxicity after renal transplantation. J. Am. Soc. Nephrol. 16, 1501–1511 (2005).

  44. Roy JN, Barama A, Poirier C, Vinet B, Roger M: Cyp3A4, Cyp3A5, and MDR-1 genetic influences on tacrolimus pharmacokinetics in renal transplant recipients. Pharmacogenet. Genomics 16, 659–665 (2006).

  45. Thervet E, Anglicheau D, King B et al.: Impact of cytochrome p450 3A5 genetic polymorphism on tacrolimus doses and concentration-to-dose ratio in renal transplant recipients. Transplantation 76, 1233–1235 (2003).

  46. Wyatt CM, Klotman PE: Antiretroviral therapy and the kidney: balancing benefit and risk in patients with HIV infection. Expert Opin. Drug Saf. 5, 275–287 (2006).

  47. Sax PE, Gallant JE, Klotman PE: Renal safety of tenofovir disoproxil fumarate. AIDS Read. 17, 90–92, 99–104, C3 (2007).

  48. Izzedine H, Hulot JS, Villard E et al.: Association between ABCC2 gene haplotypes and tenofovir-induced proximal tubulopathy. J. Infect. Dis. 194, 1481–1491 (2006).

  49. Kirchheiner J, Nickchen K, Bauer M et al.: Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol. Psychiatry 9, 442–473 (2004).

  50. Dubinsky MC, Reyes E, Ofman J, Chiou CF, Wade S, Sandborn WJ: A cost–effectiveness analysis of alternative disease management strategies in patients with Crohn's disease treated with azathioprine or 6-mercaptopurine. Am. J. Gastroenterol. 100, 2239–2247 (2005).

  51. Sanderson J, Ansari A, Marinaki T, Duley J: Thiopurine methyltransferase: should it be measured before commencing thiopurine drug therapy? Ann. Clin. Biochem. 41, 294–302 (2004).

  52. van Aken J, Schmedders M, Feuerstein G, Kollek R: Prospects and limits of pharmacogenetics: the thiopurine methyl transferase (TPMT) experience. Am. J. Pharmacogenomics 3, 149–155 (2003).

  53. Marra CA, Esdaile JM, Anis AH: Practical pharmacogenetics: the cost effectiveness of screening for thiopurine S-methyltransferase polymorphisms in patients with rheumatological conditions treated with azathioprine. J. Rheumatol. 29, 2507–2512 (2002).

  54. Milek M, Murn J, Jaksic Z, Lukac Bajalo J, Jazbec J, Mlinaric Rascan I: Thiopurine S-methyltransferase pharmacogenetics: genotype to phenotype correlation in the Slovenian population. Pharmacology 77, 105–114 (2006).

  55. Sies C, Florkowski C, George P et al.: Measurement of thiopurine methyl transferase activity guides dose-initiation and prevents toxicity from azathioprine. N. Z. Med. J. 118, U1324 (2005).

  56. Martin AM, Krueger R, Almeida CA, Nolan D, Phillips E, Mallal S: A sensitive and rapid alternative to HLA typing as a genetic screening test for abacavir hypersensitivity syndrome. Pharmacogenet. Genomics 16, 353–357 (2006).

  57. Phillips EJ: Genetic screening to prevent abacavir hypersensitivity reaction: are we there yet? Clin. Infect. Dis. 43, 103–105 (2006).

  58. Martin A, Nolan D, Almeida CA, Rauch A, Mallal S: Predicting and diagnosing abacavir and nevirapine drug hypersensitivity: from bedside to bench and back again. Pharmacogenomics 7, 15–23 (2006).

  59. Rauch A, Nolan D, Martin A, McKinnon E, Almeida C, Mallal S: Prospective genetic screening decreases the incidence of abacavir hypersensitivity reactions in the Western Australian HIV cohort study. Clin. Infect. Dis. 43, 99–102 (2006).

  60. Shalev O, Wollner A, Menczel J: Diabetic ketoacidosis does not precipitate haemolysis in patients with the Mediterranean variant of glucose-6-phosphate dehydrogenase deficiency. Br. Med. J. (Clin. Res. Ed.) 288, 179–180 (1984).

  61. Mason PJ, Bautista JM, Gilsanz F: G6PD deficiency: the genotype–phenotype association. Blood Rev. 21, 267–283 (2007).

  62. Ronquist G, Theodorsson E: Inherited, non-spherocytic haemolysis due to deficiency of glucose-6-phosphate dehydrogenase. Scand. J. Clin. Lab. Invest. 67, 105–111 (2007).

  63. Koopmans J, Hiraki S, Ross LF: Attitudes and beliefs of pediatricians and genetic counselors regarding testing and screening for CF and G6PD: implications for policy. Am. J. Med. Genet. A 140, 2305–2311 (2006).

  64. Senter PD, Beam KS, Mixan B, Wahl AF: Identification and activities of human carboxylesterases for the activation of CPT-11, a clinically approved anticancer drug. Bioconjug Chem 12, 1074–80 (2001).

  65. Bosma PJ, Chowdhury JR, Bakker C et al.: The genetic basis of the reduced expression of bilirubin UDP-glucuronosyltransferase 1 in Gilbert's syndrome. N. Engl. J. Med. 333, 1171–1175 (1995).

  66. Ando Y, Saka H, Ando M et al.: Polymorphisms of UDP-glucuronosyltransferase gene and irinotecan toxicity: a pharmacogenetic analysis. Cancer Res. 60, 6921–6926 (2000).

  67. Massacesi C, Terrazzino S, Marcucci F et al.: Uridine diphosphate glucuronosyl transferase 1A1 promoter polymorphism predicts the risk of gastrointestinal toxicity and fatigue induced by irinotecan-based chemotherapy. Cancer 106, 1007–1016 (2006).

  68. Rouits E, Boisdron-Celle M, Dumont A, Guerin O, Morel A, Gamelin E: Relevance of different UGT1A1 polymorphisms in irinotecan-induced toxicity: a molecular and clinical study of 75 patients. Clin. Cancer Res. 10, 5151–5159 (2004).

  69. Innocenti F, Undevia SD, Iyer L et al.: Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J. Clin. Oncol. 22, 1382–1388 (2004).

  70. Han JY, Lim HS, Shin ES et al.: Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J. Clin. Oncol. 24, 2237–2244 (2006).

  71. Sai K, Saeki M, Saito Y et al.: UGT1A1 haplotypes associated with reduced glucuronidation and increased serum bilirubin in irinotecan-administered Japanese patients with cancer. Clin. Pharmacol. Ther. 75, 501–515 (2004).

  72. Wadelius M, Pirmohamed M: Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenomics J. 7, 99–111 (2007). • Comprehensive review of the current status of warfarin pharmacogenetics. A total of 30 genes may be involved in the biotransformation and mode of action of warfarin, which are discussed in this review.

  73. Fargher EA, Tricker K, Newman W et al.: Current use of pharmacogenetic testing: a national survey of thiopurine methyltransferase testing prior to azathioprine prescription. J. Clin. Pharm. Ther. 32, 187–195 (2007).

  74. van den Akker van Marle ME, Gurwitz D, Detmar SB et al.: Cost–effectiveness of pharmacogenomics in clinical practice: a case study of thiopurine methyltransferase genotyping in acute lymphoblastic leukemia in Europe. Pharmacogenomics 7, 783–792 (2006).

  75. Martin AM, Nolan D, Gaudieri S et al.: Predisposition to abacavir hypersensitivity conferred by HLA-B*5701 and a haplotypic Hsp70-Hom variant. Proc. Natl Acad. Sci. USA 101, 4180–4185 (2004).

  76. Martin AM, Nolan D, James I et al.: Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. AIDS 19, 97–99 (2005).

  77. Hartman AR, Helft P: The ethics of CYP2D6 testing for patients considering tamoxifen. Breast Cancer Res. 9, 103 (2007).

  78. Koren G, Cairns J, Chitayat D, Gaedigk A, Leeder SJ: Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother. Lancet 368, 704 (2006). •• Important example where pharmacogenetic research may help to change clinical practice.

  79. Duguay Y, Baar C, Skorpen F, Guillemette C: A novel functional polymorphism in the uridine diphosphate-glucuronosyltransferase 2B7 promoter with significant impact on promoter activity. Clin. Pharmacol. Ther. 75, 223–233 (2004).

  80. Giacomini KM, Krauss RM, Roden DM, Eichelbaum M, Hayden MR, Nakamura Y: When good drugs go bad. Nature 446, 975–977 (2007).

  81. Hung SI, Chung WH, Liou LB et al.: HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc. Natl Acad. Sci. USA 102, 4134–4139 (2005).

  82. Pariente EA, Hamoud A, Goldfain D et al.:[Hepatit is caused by clometacin (Duperan). Retrospective study of 30 cases. A model of autoimmune drug-induced hepatitis?]. Gastroenterol. Clin. Biol. 13, 769–774 (1989).

  83. Lieberman JA, Yunis J, Egea E, Canoso RT, Kane JM, Yunis EJ: HLA-B38, DR4, DQw3 and clozapine-induced agranulocytosis in Jewish patients with schizophrenia. Arch. Gen. Psychiatry 47, 945–948 (1990).

  84. Vlahov V, Bacracheva N, Tontcheva D et al.: Genetic factors and risk of agranulocytosis from metamizol. Pharmacogenetics 6, 67–72 (1996).

  85. Gran JT, Husby G, Thorsby E: HLA DR antigens and gold toxicity. Ann. Rheum. Dis. 42, 63–66 (1983).

  86. Batchelor JR, Welsh KI, Tinoco RM et al.: Hydralazine-induced systemic lupus erythematosus: influence of HLA-DR and sex on susceptibility. Lancet 1, 1107–1109 (1980).

  87. Schmidt KL, Mueller-Eckhardt C: Agranulocytosis, levamisole, and HLA-B27. Lancet 2, 85 (1977).

  88. Roujeau JC, Huynh TN, Bracq C, Guillaume JC, Revuz J, Touraine R: Genetic susceptibility to toxic epidermal necrolysis. Arch. Dermatol. 123, 1171–1173 (1987).

  89. Wooley PH, Griffin J, Panayi GS, Batchelor JR, Welsh KI, Gibson TJ: HLA-DR antigens and toxic reaction to sodium aurothiomalate and d-penicillamine in patients with rheumatoid arthritis. N. Engl. J. Med. 303, 300–302 (1980).

  90. Ueda K, Ishitsu T, Seo T et al.: Glutathione S-transferase M1 null genotype as a risk factor for carbamazepine-induced mild hepatotoxicity.

  91. Daly AK, Aithal GP, Leathart JB, Swainsbury RA, Dang TS, Day CP: Genetic susceptibility to diclofenac-induced hepatotoxicity: contribution of UGT2B7, CYP2C8, and ABCC2 genotypes. Gastroenterology 132, 272–281 (2007).

  92. Huang YS, Chern HD, Su WJ et al.: Cytochrome P450 2E1 genotype and the susceptibility to antituberculosis drug-induced hepatitis. Hepatology 37, 924–930 (2003).

  93. Imanishi H, Okamura N, Yagi M et al.: Genetic polymorphisms associated with adverse events and elimination of methotrexate in childhood acute lymphoblastic leukemia and malignant lymphoma. J. Hum. Genet. 52, 166–171 (2007).

  94. Haas DW, Bartlett JA, Andersen JW et al.: Pharmacogenetics of nevirapine-associated hepatotoxicity: an Adult AIDS Clinical Trials Group collaboration. Clin. Infect. Dis. 43, 783–786 (2006).

  95. Barclay ML, Sawyers SM, Begg EJ et al.: Correlation of CYP2D6 genotype with perhexiline phenotypic metabolizer status. Pharmacogenetics 13, 627–632 (2003).

  96. Simon T, Becquemont L, Mary-Krause M et al.: Combined glutathione-S-transferase M1 and T1 genetic polymorphism and tacrine hepatotoxicity. Clin. Pharmacol. Ther. 67, 432–437 (2000).

  97. Acuna G, Foernzler D, Leong D et al.: Pharmacogenetic analysis of adverse drug effect reveals genetic variant for susceptibility to liver toxicity. Pharmacogenomics J. 2, 327–334 (2002).

  98. Watanabe I, Tomita A, Shimizu M et al.: A study to survey susceptible genetic factors responsible for troglitazone-associated hepatotoxicity in Japanese patients with Type 2 diabetes mellitus. Clin. Pharmacol. Ther. 73, 435–455 (2003).

  99. Sollid LM, Thorsby E: HLA susceptibility genes in celiac disease: genetic mapping and role in pathogenesis. Gastroenterology 105, 910–922 (1993).

  100. Eller E, Vardi P, Babu SR et al.: Celiac disease and HLA in a Bedouin kindred. Hum. Immunol. 67, 940–950 (2006).

  101. Brar P, Lee AR, Lewis SK, Bhagat G, Green PH: Celiac disease in African–Americans. Dig. Dis. Sci. 51, 1012–1015 (2006).

  102. Catassi C, Doloretta Macis M, Ratsch IM, De Virgiliis S, Cucca F: The distribution of DQ genes in the Saharawi population provides only a partial explanation for the high celiac disease prevalence. Tissue Antigens 58, 402–406 (2001).

  103. Palavecino EA, Mota AH, Awad J et al.: HLA and celiac disease in Argentina: involvement of the DQ subregion. Dis. Markers 8, 5–10 (1990).

  104. Rodacki M, Zajdenverg L, Tortora RP et al.: Characteristics of childhood and adult-onset Type 1 diabetes in a multi-ethnic population. Diabetes Res. Clin. Pract. 69, 22–28 (2005).

  105. Zung A, Elizur M, Weintrob N et al.: Type 1 diabetes in Jewish Ethiopian immigrants in Israel: HLA class II immunogenetics and contribution of new environment. Hum. Immunol. 65, 1463–1468 (2004).

  106. Allen M, Sandberg-Wollheim M, Sjogren K, Erlich HA, Petterson U, Gyllensten U: Association of susceptibility to multiple sclerosis in Sweden with HLA class II DRB1 and DQB1 alleles. Hum. Immunol. 39, 41–48 (1994).

  107. Dekker JW, Easteal S, Jakobsen IB et al.: HLA-DPB1 alleles correlate with risk for multiple sclerosis in Caucasoid and Cantonese patients lacking the high-risk DQB1*0602 allele. Tissue Antigens 41, 31–36 (1993).

  108. Barcellos LF, Thomson G, Carrington M et al.: Chromosome 19 single-locus and multilocus haplotype associations with multiple sclerosis. Evidence of a new susceptibility locus in Caucasian and Chinese patients. JAMA 278, 1256–1261 (1997).

  109. Ciusani E, Allen M, Sandberg-Wollheim M et al.: Analysis of HLA-class II DQA1, DQB1, DRB1 and DPB1 in Italian multiple sclerosis patients. Eur. J. Immunogenet. 22, 171–178 (1995).

  110. Laroni A, Calabrese M, Perini P et al.: Multiple sclerosis and autoimmune diseases: epidemiology and HLA-DR association in North-east Italy. J. Neurol. 253, 636–639 (2006).

  111. Najim Al-Din AS, Kurdi A, Mubaidin A, El-Khateeb M, Khalil RW, Wriekat AL: Epidemiology of multiple sclerosis in Arabs in Jordan: a comparative study between Jordanians and Palestinians. J. Neurol. Sci 135, 162–167 (1996).

  112. Spurkland A, Tabira T, Ronningen KS, Vandvik B, Thorsby E, Vartdal F: HLA-DRB1, -DQA1, -DQB1, -DPA1 and -DPB1 genes in Japanese multiple sclerosis patients. Tissue Antigens 37, 171–173 (1991).

  113. Howell WM, Sage DA, Evans PR, Smith JL, Francis GS, Haegert DG: No association between susceptibility to multiple sclerosis and HLA-DPB1 alleles in the French Canadian population. Tissue Antigens 37, 156–160 (1991).

  114. Kindmark A, Jawaid A, Harbron CG et al.: Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis.

Top Articles

Latest Posts

Article information

Author: Neely Ledner

Last Updated: 12/11/2022

Views: 5634

Rating: 4.1 / 5 (42 voted)

Reviews: 81% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.